Авторизация

Имя пользователя:
Пароль:


Вы вошли как гость, рекомендуем Вам авторизироваться либо пройти процесс регистрации . Если Вы забыли пароль, то Вы можете его восстановить.
Категории
Новости

Архив сайта
Облако тегов
Календарь

Главная Новости

Основные характеристики трансформатора

Опубликовано: 03.09.2018

видео Основные характеристики трансформатора

Силовой трансформатор. Устройство, назначение и принцип действия.

Внешняя характеристика трансформатора



Известно, что напряжение на выводах вторичной обмотки трансформатора зависит от тока нагрузки, подключенной к этой обмотке. Данная зависимость называется внешней характеристикой трансформатора.

Внешняя характеристика трансформатора снимается при постоянном напряжении питания, когда с изменением нагрузки, по сути - с изменением тока нагрузки, изменяется и напряжение на выводах вторичной обмотки, т. е. вторичное напряжение трансформатора.


Трансформаторы. Основные определения и принцип ...

Это явление объясняется тем, что на сопротивлении вторичной обмотки, с изменением сопротивления нагрузки, изменяется и падение напряжения, и за счет изменения падения напряжения на сопротивлении первичной обмотки, изменяется соответственно и ЭДС вторичной обмотки.


Как рассчитать трансформатор? (Расчёт и перемотка трансформатора #3)

Поскольку уравнение равновесия ЭДС в первичной обмотке содержит векторные величины, напряжение на вторичной обмотке зависит и от тока нагрузки, и от характера этой нагрузки: активная ли она, индуктивная или емкостная.

О характере нагрузки свидетельствует величина угла сдвига фаз между током через нагрузку и напряжением на нагрузке. В целом, можно ввести коэффициент нагрузки, который покажет то, во сколько раз ток нагрузки отличается от номинального для данного трансформатора:

Для точного расчета внешней характеристики трансформатора можно прибегнуть к схеме замещения, в которой, изменяя сопротивление нагрузки, фиксировать напряжение и ток вторичной обмотки.

Тем не менее, для практики полезной оказывается следующая формула, в которую подставляются напряжение холостого хода и «изменение вторичного напряжения», которое измеряется в процентах, и вычисляется как арифметическая разность между напряжением холостого хода и напряжением при данной нагрузке в процентах от напряжения холостого хода:

Выражение для нахождения «изменения вторичного напряжения» получают с определенными допущениями из схемы замещения трансформатора:

Здесь введены величины реактивной и активной составляющей напряжения короткого замыкания. Данные составляющие напряжения (активная и реактивная) находятся через параметры схемы замещения, либо находятся экспериментальным путем в опыте короткого замыкания .

Опыт короткого замыкания позволяет многое узнать о трансформаторе. Напряжение короткого замыкания находят как отношение напряжения короткого замыкания в эксперименте к номинальному первичному напряжению. Параметр «напряжение короткого замыкания» указывается в процентах.

В ходе эксперимента у трансформатора накоротко замыкают вторичную обмотку, при этом на первичную подают напряжение значительно ниже номинального, чтобы ток короткого замыкания оказался бы равным номиналу. Здесь напряжение питания уравновесится падениями напряжения на обмотках, и величину подводимого пониженного напряжения рассматривают как эквивалентное падение напряжения на обмотках при токе нагрузки равном номиналу.

Для маломощных трансформаторов питания и для силовых трансформаторов величина напряжения короткого замыкания лежит в пределах от 5% до 15%, и чем мощнее трансформатор — тем меньше эта величина. Точное значение напряжения короткого замыкания приводится в технической документации на конкретный трансформатор.

На рисунке приведены внешние характеристики, построенные в соответствии с приведенными выше формулами. Видим, что графики линейны, это потому, что вторичное напряжение не сильно зависит от коэффициента нагрузки в силу относительно малого сопротивления провода обмоток, а рабочий магнитный поток мало зависит от нагрузки.

На рисунке видно, что угол сдвига фаз в зависимости от характера нагрузки влияет на то, падающей или возрастающей получается характеристика. При нагрузке активной или активно-индуктивной — характеристика падающая, при активно-емкостной — может быть возрастающей, и тогда второй член в формуле для «изменения напряжения» становится отрицательным.

Для маломощных трансформаторов на активной составляющей обычно падает больше, чем на индуктивной, поэтому внешняя характеристика при активной нагрузке менее линейная, чем при нагрузке активно-индуктивного характера. Для более мощных трансформаторов — все наоборот, поэтому и характеристика для нагрузки активного характера окажется более жесткой.

КПД трансформатора

Коэффициентом полезного действия трансформатора называется отношение отдаваемой в нагрузку полезной электрической мощности к потребляемой трансформатором активной электрической мощности:

Потребляемая трансформатором мощность складывается из мощности потребляемой нагрузкой и мощности потерь непосредственно в трансформаторе. При том активная мощность соотносится с полной мощностью следующим образом:

Так как на выходе трансформатора напряжение в целом слабо зависит от нагрузки, то коэффициент нагрузки может быть связан с номинальной полной мощностью так:

И мощность, потребляемая нагрузкой во вторичной цепи:

Электрические потери в нагрузке произвольной величины могут быть выражены с учетом потерь при номинальной нагрузке через коэффициент нагрузки:

Потери при номинальной нагрузке достаточно точно определяются мощностью, которую трансформатор потребляет в эксперименте короткого замыкания, а потери магнитного характера равны мощности, потребляемой трансформатором на холостом ходу. Эти составляющие потерь приводятся в документации на трансформаторы. Так, если учесть приведенные факты, формула для КПД примет следующий вид:

На рисунке приведены зависимости КПД трансформатора от нагрузки. При нагрузке равной нулю — КПД равен нулю.

С ростом коэффициента нагрузки возрастает и отдаваемая в нагрузку мощность, причем магнитные потери неизменны, и КПД, легко видеть, линейно растет. Далее наступает оптимальное значение коэффициента нагрузки, при котором КПД достигает своего предела, в этой точке получается максимальный КПД.

После прохождения оптимального коэффициента нагрузки КПД начинает постепенно снижаться. Это происходит потому, что растут электрические потери, они пропорциональны квадрату тока и, соответственно, квадрату коэффициента нагрузки. Максимум КПД для мощных трансформаторов (мощность измеряется в единицах и более КВА) лежит в пределах от 98% до 99%, у маломощных (менее 10 ВА) — КПД может быть около 60%.

Как правило, трансформаторы еще на стадии проектирования стараются сделать такими, чтобы КПД достигал максимального значения при оптимальном коэффициенте нагрузки от 0,5 до 0,7, тогда при реальном коэффициенте нагрузки от 0,5 до 1, КПД окажется близок к своему максимуму. С уменьшением коэффициента мощности (косинуса фи) нагрузки, присоединенной ко вторичной обмотке, уменьшается и отдаваемая мощность, причем электрические и магнитные потери остаются неизменными, следовательно КПД в этом случае падает.

Оптимальный режим работы трансформатора, т. е. его номинальный режим , обычно устанавливают по условиям безаварийной работы и по уровню допустимого нагрева за время определенного эксплуатационного периода. Это крайне важное условие, чтобы трансформатор отдавая номинальную мощность, работая в номинальном режиме, не перегревался бы сверх меры.

www.sp-office.com.ua. Copyright © 2016.
Администрация не несет ответственности за содержание материалов.
Главная | Карта сайта | Написать нам
rss